這是1500MHZ_osc LTspice 電路圖
問題說明:
1) Fairchild 2N3904 Spice model 是:
NPN (Is=6.734f Xti=3 Eg=1.11 Vaf=74.03 Bf=416.4 Ne=1.259 Ise=6.734 Ikf=66.78m Xtb=1.5 Br=.7371 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=3.638p Mjc=.3085 Vjc=.75 Fc=.5 Cje=4.493p Mje=.2593 Vje=.75 Tr=239.5n Tf=301.2p Itf=.4 Vtf=4 Xtf=2 Rb=10)
但 ltspice 中 Philips廠商 的2N3904 之Spice model 是:
NPN(IS=1E-14 VAF=100 Bf=300 IKF=0.4 XTB=1.5 BR=4 CJC=4E-12 CJE=8E-12 RB=20 RC=0.1 RE=0.1 TR=250E-9 TF=350E-12 ITF=1 VTF=2 XTF=3 Vceo=40
Icrating=200m mfg=Philips)
但 ltspice 中 NEC廠商 的高頻電晶體2SC3357 之Spice model 是:
NPN (IS=684.2e-18 BF=161.1 NF=1.0 VAF=51 IKF=574.6e-3 BR=10.71 NR=1.0 VAR=2.1 IKR=28.05e-3 ISE=1.0e-18 NE=1.193 ISC=6.211e-18 NC=1.1 RB=3.0 IRB=75.9e-5 RBM=1.0 RE=2.67 RC=3.5 CJE=1.847e-12 VJE=1.014 MJE=464.8e-3 CJC=1.086e-12 VJC=617.4e-3 MJC=353.8e-3 XCJC=0.1 CJS=0 VJS=0.75 MJS=0 FC=0.50 TF=23e-12 XTF=0.39 VTF=0.668 ITF=0.06 TR=0 PTF=20 EG=1.11 XTI=3.0 XTB=0 Vceo=12 Icrating=100m mfg=NEC)
一些參數在兩個model中並非都有, 甚至一些參數在兩個model中都有但值不同.
例如: 在Fairchild Is=6.734f (6.734E-15=0.6734E-14), 在 ltspice Is=1E-14 ,其中
1)不了解其中差異為何?
2)如果從元件製造商得到模型, 如何導入LTSPICE模型?
例如: 從 Fairchild 拿到元件 MPSA42 的 Spice model 如下
NPN (Is=34.9f Xti=3 Eg=1.11 Vaf=100 Bf=2.65K Ne=1.708 Ise=16.32p
Ikf=23.79m Xtb=1.5 Br=9.769 Nc=2 Isc=0 Ikr=0 Rc=7 Cjc=14.23p Mjc=.5489
Vjc=.75 Fc=.5 Cje=49.62p Mje=.4136 Vje=.75 Tr=934.3p Tf=1.69n Itf=5
Vtf=20 Xtf=150 Rb=10)
如何將此 model 導入 ltspice ?
3)如何自建LTspice 模型?
問題解釋:
Q1)不了解其中差異為何?
ANS:
1)For the same device, the numbers vary a bit from maker to maker.
You'll usually get a bit more accurate results using the maker's models.
LTspice seems to have a list of default numbers that will be inserted if
your model does not supply that particular parameter.
To make your new device part of the normal component selection list when you
run LTspice you need to edit a particular LTspice model file.
Q2)如果從元件製造商得到模型, 如何導入LTSPICE模型?
ANS:
2)The MPSA42 model text needs adding to the file LTspice/LIB/CMP/
"standard.bjt". This is the store for all the PNP NPN transistors. Open it
using 'Notepad', select and 'copy' the model text (I usually do this from
the manufacturers web site) and paste onto the bottom of the list. If more
than one line add a "+" at each new line start.
Then add " mfg=Fairchild" and " Ic rating =123ma" (say).
Philips and Fairchild models seem to correspond well with the real devices.
Run LTspice and your added model will turn up as a normal component.
更詳細的部驟參考6)補充說明
Q3)如何自建LTspice 模型?
ANS:
3)???(建構中)
4)補充 關於spicce GP模型說明,及內部參數定義:
GP模型是1970年由H.K.Gummel和H.C.Poon提出的。GP模型對EM2模型在以下幾方面作了改進:
1.直流特性:反映了集電結上電壓的變化引起有效基區寬度變化的基區寬度調製效應, 改善了輸出電導、電流增益和特徵頻率。反映了共射極電流放大倍數β隨電流和電壓的變化。
2.交流特性:考慮了正向渡越時間τF隨集電極電流IC的變化,解決了在大注入條件下由於基區展寬效應使特徵頻率fT和IC成反比的特性。
3.考慮了大注入效應,改善了高電平下的伏安特性。
4.考慮了模型參數和溫度的關係。
5.根據橫向和縱向雙極電晶體的不同,考慮了外延層電荷存儲引起的准飽和效應。
以下是GP模型參數定義及預設值(Spice Gummel–Poon model parameters)
http://en.wikipedia.org/wiki/Gummel–Poon_model
名稱 模型 參數 單位 預設值
IS current transport saturation current A 1.00E-016
BF current ideal max forward beta - 100
NF current forward current emission coefficient - 1
VAF current forward Early voltage V inf
IKF current corner for forward beta high current roll-off A inf
ISE current B-E leakage saturation current A 0
NE current B-E leakage emission coefficient - 1.5
BR current ideal max reverse beta - 1
NR current reverse current emission coefficient - 1
VAR current reverse Early voltage V inf
IKR current corner for reverse beta high current roll-off A inf
ISC current B-C leakage saturation current A 0
NC current B-C leakage emission coefficient - 2
RB resistance zero-bias base resistance ohms 0
IRB resistance current where base resistance falls half-way to its minimum A inf
RBM resistance minimum base resistance at high currents ohms RB
RE resistance emitter resistance ohms 0
RC resistance collector resistance ohms 0
CJE capacitance B-E zero-bias depletion capacitance F 0
VJE capacitance B-E built-in potential V 0.75
MJE capacitance B-E junction exponential factor - 0.33
TF capacitance ideal forward transit time s 0
XTF capacitance coefficient for bias dependence of TF - 0
VTF capacitance voltage describing VBC dependence of TF V inf
ITF capacitance high-current parameter for effect on TF A 0
PTF excess phase at freq=1.0/(TF*2PI) Hz deg 0
CJC capacitance B-C zero-bias depletion capacitance F 0
VJC capacitance B-C built-in potential V 0.75
MJC capacitance B-C junction exponential factor - 0.33
XCJC capacitance fraction of B-C depletion capacitance connected to internal base node - 1
TR capacitance ideal reverse transit time s 0
CJS capacitance zero-bias collector-substrate capacitance F 0
VJS capacitance substrate junction built-in potential V 0.75
MJS capacitance substrate junction exponential factor - 0
XTB forward and reverse beta temperature exponent - 0
EG energy gap for temperature effect of IS eV 1.1
XTI temperature exponent for effect of IS - 3
KF flicker-noise coefficient - 0
AF flicker-noise exponent - 1
FC coefficient for forward-bias depletion capacitance formula - 0.5
TNOM parameter measurement temperature deg.C 27
其他更詳細的說明參考如下:
BJT : http://web.engr.oregonstate.edu/~moon/ece323/hspice98/files/chapter_14.pdf
diode : http://web.engr.oregonstate.edu/~moon/ece323/hspice98/files/chapter_13.pdf
- Star-Hspice Manual (PDF) (~11MB)
- Introducing Star-Hspice (23 KB)
- Getting Started (90 KB)
- Specifying Simulation Input and Controls (246 KB)
- Specifying Simulation Output (192 KB)
- Using Sources and Stimuli (355 KB)
- DC Initialization and Point Analysis (146 KB)
- Performing Transient Analysis (141 KB)
- Using the .DC Statement (45 KB)
- AC Sweep and Signal Analysis (137 KB)
- Analyzing Electrical Yields (438 KB)
- Optimizing Performance (338 KB)
- Using Passive Devices (226 KB)
- Using Diodes (134 KB)
- BJT Models (467 KB)
- Introducing MOSFET (576 KB)
- Selecting a MOSFET Model (1,555 KB)
- Using the Bipolar Transistor Model -VBIC (39 KB)
- Finding Device Libraries (55 KB)
- Performing Cell Characterization (212 KB)
- Signal Integrity (422 KB)
- Using Transmission Lines (655 KB)
- Performing Behavioral Modeling (723 KB)
- Using Meta I/O (62 KB)
- Performing Pole/Zero Analysis (138 KB)
- Performing FFT Spectrum Analysis (221 KB)
- Modeling Filters and Networks (513 KB)
- Timing Analysis Using Bisection (105 KB)
- Performing Library Encryption (30 KB)
- Running Demos (191 KB)
- Cover Sheets (22 KB)
Table of Contents (48 KB)
Index (175 KB)
5) other LINK:http://ecee.colorado.edu/~bart/book/book/chapter5/ch5_6.htm
SPICE BJT Parameters (spice BJT 參數定義)
----------------------------------
BF Forward active current gain
BR Reverse active current gain
IS Transport saturation current
CJE Base-emitter zero-bias junction capacitance
CJC Base-collector zero-bias Junction capacitance
VJE Base-emitter built-in potential
VJC Base-collector built-in potential
VAF Forward mode Early voltage
VAR Reverse mode Early voltage
NF Forward mode ideality factor
NR Reverse mode ideality factor
沒有留言:
張貼留言
注意:只有此網誌的成員可以留言。