Versa-Pac transformer
Versa-Pac transformer VP1-1400-R 機構圖
原文:
http://www.edn.com/design/power-management/4320557/JFET-based-dc-dc-converter-operates-from-300-mV-supply
JFET-based dc/dc converter operates from 300-mV supply
You use a JFET's self-biasing characteristics to build a dc/dc converter that operates from power sources such as solar cells, thermopiles, and single-stage fuel cells, all of which deliver less than 600 mV and sometimes as little as 300 mV. Figure 1 shows the drain-to-source characteristics of an N-channel JFET under zero-bias conditions, which you can produce by connecting its gate and source together. Applying 100 mV causes a current of 10 mA to flow through the device, increasing to 30 mA at 350 mV. Exploiting the JFET's ability to conduct significant current at zero bias makes it possible to design a self-starting, low-input-voltage converter.
The circuit can supply 5V at currents as large as 2 mA—enough to serve many micropowered applications or to provide auxiliary bias for a higher power switched-mode voltage regulator. At 300-mV input, the circuit starts up at load currents of 300 µA. A load current of 2 mA requires an input of 475 mV.
In Figure 2, Q1, a parallel-connected pair of Philips Semiconductor's (www.semiconductors.philips.com) BF862 JFETs, and Coiltronics' (www.coiltronics.com) Versa-Pac transformer(http://datasheet.octopart.com/VP1-1400-R-Coiltronics-datasheet-11474.pdf), T(VP1-1400-R), form an oscillator in which T1's secondary winding provides feedback to Q1's gate. When you first apply power, Q1's gate rests at 0V, and drain current flows through T1's primary winding. T1's phase-inverted secondary winding responds by delivering a negative voltage to Q1's gate, which turns off Q1 and interrupts current flow through T1's primary winding. In turn, T1's secondary voltage collapses, and sustained oscillations begin. Although the BF862's published specifications do not cover the device's internal geometry, the device has a low on-resistance and maintains a low gate-turn-on threshold voltage. Using a pair of parallel-connected JFETs for Q1 ensures the low saturation voltage for operation at low power-supply voltages.
Rectifying and filtering the positive-going flyback-voltage impulses on Q1's drain produce a dc voltage across capacitor C1. To assist the circuit's start-up, a P-channel MOSFET, Q2, which requires a gate-to-source voltage of approximately 2V for conduction, initially isolates the output load from the rectifier. When Q2 conducts, the output voltage increases toward 5V. Comparator IC1, a Linear Technology (www.linear.com) LTC-1440, draws power from Q2's source and imposes output-voltage regulation by comparing its internal voltage reference with a sample of the output voltage. The output from IC1 varies Q1's on-time through Q3 to close the control loop and maintain output-voltage regulation. Figure 3 shows the ripple voltage present at the power supply's output. When the output voltage decays, comparator IC1 switches (Trace B, middle) and allows Q1 to oscillate. The resulting flyback events at Q1's drain (Trace C, bottom) restore the output voltage.
Using Q3 as a simple but effective shunt control for Q1's gate voltage results in a 25-mA quiescent-current drain from the power source. A modification reduces the quiescent drain to 1 mA (Figure 4). Inserting switch Q4 in series with T1's secondary winding more efficiently controls Q1's gate. Bootstrapping the voltage across T1's secondary winding produces negative-turn-off-bias voltage for Q4. Figure 5 illustrates how to connect T1's windings. When Q4 switches off, it interrupts the current flowing in T1's secondary winding and drives T1's Pin 5 positive. Without diodes D4 and D5, the peak voltage would approach 15V and reverse-bias Q4, an undesirable condition. Under normal operating conditions, excursions of approximately 0.8V appear at Pin 5, necessitating the use of two series-connected diodes to clamp the voltage at a safe level. Zener diode D3 holds off bias-supply loading to aid start-up during initial power application.
datasheet download:
TP0610L : P-Channel 60V 0.18A 0.8W (D-S) MOSFET
http://www.vishay.com/docs/70209/70209.pdf
2N7002K (取代 VN2222LL) : N-Channel 60-V (D-S) MOSFETs with Zener Gate
http://www.vishay.com/docs/70212/70212.pdf
http://www.vishay.com/docs/71333/2n7002k.pdf
LTC-1440 : Ultralow Power Single/Dual Comparator with Reference
http://cds.linear.com/docs/Datasheet/144012fd.pdf
BAT54-V(取代 BAT85S) : Small Signal Schottky Diode
http://www.vishay.com/docs/85513/bat85s.pdf
http://www.vishay.com/docs/85508/bat54v.pdf
note:
補充1: BF862 spice model
* BF862 SPICE MODEL MARCH 2007 NXP SEMICONDUCTORS * ENVELOPE SOT23 * JBF862: 1, Drain, 2,Gate, 3,Source Ld 1 4 L= 1.1nH Ls 3 6 L= 1.25nH Lg 2 5 L= 0.78nH Rg 5 7 R= 0.535 Ohm Cds 1 3 C= 0.0001pF Cgs 2 3 C= 1.05pF Cgd 1 2 C= 0.201pF Co 4 6 C= 0.35092pF JBF862 model parameters: .model JBF862 NJF(Beta=47.800E-3 Betatce=-.5 Rd=.8 Rs=7.5000 Lambda=37.300E-3 Vto=-.57093 + Vtotc=-2.0000E-3 Is=424.60E-12 Isr=2.995p N=1 Nr=2 Xti=3 Alpha=-1.0000E-3 + Vk=59.97 Cgd=7.4002E-12 M=.6015 Pb=.5 Fc=.5 Cgs=8.2890E-12 Kf=87.5E-18 + Af=1)
補充2: BF862 LTspice model
.model BF862 NJF(Beta=47.800E-3 Betatce=-.5 Rd=.8 Rs=7.5000 Lambda=37.300E-3 Vto=-.57093 + Vtotc=-2.0000E-3 Is=424.60E-12 Isr=2.995p N=1 Nr=2 Xti=3 Alpha=-1.0000E-3 + Vk=59.97 Cgd=7.4002E-12 M=.6015 Pb=.5 Fc=.5 Cgs=8.2890E-12 Kf=87.5E-18 + Af=1 mfg=nxp)
補充3:
1)TP0610L 第三方model (LTspice 採用 “.MODEL” 及“.SUBCKT” 語法)
http://www.vishay.com/docs/78526/tp0610k_.lib (這是“.SUBCKT” 語法)
勿忘於LTspice 電路中使用SPICE Directive 功能鍵加入 ".inc TP0610K.lib" 語法.
2) BAT54-V 之 LTspice model
.model BAT54 D(Is=.1u Rs=2.2 N=1 Cjo=12p M=.3 Eg=.69 Xti=2 Iave=300m Vpk=30 mfg=Vishay type=Schottky)
3) 2N7002K 之 第三方model
http://www.vishay.com/docs/78742/2n7002k_.lib (這是“.SUBCKT” 語法)
勿忘於LTspice 電路中使用SPICE Directive 功能鍵加入 ".inc 2n7002k.lib" 語法.
補充4:
在 LTspice IV 中使用變壓器器
在許多需要採用反激式、正激式和 SEPIC 轉換器的開關穩壓器設計中,變壓器及耦合電感器是重要的組件。它們在提供隔離勢壘、實現高降壓或升壓比、以及提供多輸出或負輸出方面起到了至關緊要的作用。
雖然可以針對某個特定的變壓器製作專用的子電路,但 LTspice 優選的方法則是為每個變壓器繞組指定一 個單獨的電感器,然後通過單個互感 (K) 運算式將它們磁耦合在一起。
本視頻將概述怎樣定義一個採用電感器的變壓器及通過一個 K 運算式來規定互感,最後說明如何給仿真 增設多個繞組。 http://video.linear.com.cn/93
補充5:
给 LTspice IV 添加第三方模型
LTspice IV 可提供众多的器件模型,包括诸如晶体管和 MOSFET 等分立器件的模型。不过,它还拥
有许多由其他制造商提供的第三方模型,您可以把它们添加至自己的 LTspice IV 电路仿真中。此类
第三方 SPICE 模型采用 “.MODEL” 和 “.SUBCKT” 语句来表述。被赋予 “.MODEL” 语句的模型
用于固有 SPICE 器件 (例如二极管和晶体管)。而被赋予 “.SUBCKT” 语句的模型则利用固有 SPICE
器件的电路结集来定义组件。
本视频概要说明了怎样为 LTspice IV 增添一个用于固有 SPICE 器件的第三方“.MODEL” 语句、以
及如何添加和创建一个用于第三方 “.SUBCKT” 语句的符号。 http://video.linear.com.cn/97
補充6:
变压器在LTspice四
http://cn.edaboard.com/topic-2175600.0.html
沒有留言:
張貼留言
注意:只有此網誌的成員可以留言。