2010年6月20日 星期日

馬鈴薯電池 成本低電力強

馬鈴薯電池



馬鈴薯電池 成本低電力強

耶路撒冷希伯來大學(Hebrew University of Jerusalem)的伊森研究發展公司(Yissum Research Development Co.)研發出馬鈴薯電池技術,產生電力的成本將比普通電池便宜5到50倍,在電解作用前先水煮馬鈴薯,會比未經處理的馬鈴薯多上10倍的電力,電池可供電數日甚至更久,在開發中國家將具有推廣潛力。

希伯來大學的拉比諾威契(Haim Rabinowitch)及研究生高柏格(Alex Golberg),與柏克萊加州大學(University of California at Berkeley)的魯賓斯基(Boris Rubinsky)合作發現,只要以鋅銅電極與一片普通馬鈴薯就能做出高效能電池。

此項研究刊登在6月號「再生與永續能源期刊」(Journal of Renewable and Sustainable Energy),研究指出,使用馬鈴薯電池供電的電燈,會比開發中國家使用的煤油燈成本便宜6倍。

伊森執行長米西林(Yaacov Michlin)在聲明中表示,「如此天然的電力提供方式,不僅可以真正把光與電帶進沒有電力基礎建設的地區,更可讓開發中國家數百萬人因此受惠。」




環保電池如何運作?

環保電池運作原理,是將一組(或多組)連結的鋅片及銅片插入含水的媒介中,如馬鈴薯、泥土、水或水果中。鋅片是負極,銅片是正極,當金屬片放入電解液中會產生化學作用,酸的成分在電解液中分解原子結構而產生鋅和銅,導致個體電子被釋放出來,在這個化學作用裡鋅片比銅片活性要大,鋅片產生的電子速度也比銅片快,多餘的電子會自較活躍的鋅片到較不活躍的銅片,這種電子的流動會形成小小的電流,通常這個電流已可以使電燈泡發亮,啟動手錶或聲音晶片。現在,你已了解基本原理了,我們可以開始進行實驗!

馬鈴薯的力量: 作一個馬鈴薯電力時鐘吧!

你會需要:

由內附零件中取出:有保護蓋的LCD手錶,2個鋅片,2個銅片,膠帶和電線。

需自備: 2個馬鈴薯或是任何食物,如:檸檬或蘋果

你知道嗎:對於正極和負極的極限有普遍的標準,正極永遠是接紅線,而負極則是接黑色的,負極永遠是接鋅片(較活躍性的),而正極永遠是接銅片(較不活躍性)

注意:把電線和金屬片(鋅和銅)連在一起是很重要的,使用膠帶使他們牢牢的接觸。

1、把LCD手錶上的負極()和黑電線接觸,將電線裡的金屬線和鋅片上的洞綁在一起。

2、把LCD手錶上的正極()和紅線接觸,連接到銅片上。

3、銅片和鋅片連接在電線集合成為一組聯合體

4、現在所有連接物都連接了,然後把鋅片和銅片插入馬鈴薯裡,看!你創造了手錶電池了!(請看第M區設定時鐘)

備註:在實驗完成後,記得清潔鋅片



英文論文:

Zn/Cu-vegetative batteries, bioelectrical characterizations, and primary cost analyses

J. Renewable Sustainable Energy 2, 033103 (2010); doi:10.1063/1.3427222 (11 page)

Alex Golberg1, Haim D. Rabinowitch1,2, and Boris Rubinsky1,3

1Center for Bioengineering in the Service of Humanity and Society, School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel
2Robert H. Smith Faculty of Agriculture, Food and Environment, Robert H. Smith Institute of Plant Science and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 91904 IL, Israel
3Department of Mechanical Engineering and Graduate Program in Biophysics, University of California at Berkeley, Berkeley, California 94720, USA


Developing a cheap, sustainable, and simple to use low power electrical energy source will substantially improve the life quality of 1.6×109 people, comprising 32% of the developing non-Organization for Economic Co-Operation and Development populations currently lacking access to electrical infrastructure ( World Energy Outlook, 2006, http://www.worldenergyoutlook.org/2006.asp, 10 September 2009 ). Such a source will provide important needs as lighting, telecommunication, and information transfer. Our previous studies on Zn/Cu electrolysis in animal tissues revealed a new fundamental bioelectrical property: the galvanic apparent internal impedance (GAII) [ A. Golberg, H. D. Rabinowitch, and B. Rubinsky, Biochem. Biophys. Res. Commun. 389, 168 (2009) ], with potential use for tissue typing. We now report on new fundamental studies on GAII in vegetative matter and on a simple way for significant performance improvement of Zn/Cu-vegetative battery. We show that boiled or irreversible electroporated potato tissues with disrupted cell membranes generate electric power up to tenfold higher than equal galvanic cell made of untreated potato. The study brought about basic engineering data that make possible a systematic design of a Zn/Cu-potato electrolytic battery. The ability to produce and utilize low power electricity was demonstrated by the construction of a light-emitting diode based system powered by potato cells. Primary cost analyses showed that treated Zn/Cu-potato battery generates portable energy at ∼ 9 USD/kW h, which is 50-fold cheaper than the currently available 1.5 V AA alkaline cell (retail) or D cells ( ∼ 49–84 USD/kW h). Admittedly very simple, the treated potato or similarly treated other plant tissues could provide an immediate, environmental friendly, and inexpensive solution to many of the low power energy needs in areas of the world lacking access to electrical infrastructure.

© 2010 American Institute of Physics

History

Received 2 December 2009
Accepted 16 April 2010
Published online 7 June 2010


KEYWORDS and PACS

Keywords
PUBLICATION DATA

ISSN:

1941-7012 (online)
Publisher:


REFERENCES
  1. L. Galvani, Bon. Sci. Art. Inst. Acad. Comm. 7, 363 (1791)
    (English Transl. by M. Glover Foley, 1953, Norwalk, CT: Burndy Library, 1953), http://www.bo.infn.it/galvani/de-vir-eng.html.
  2. A. Volta, Philos. Trans. R. Soc. London 90, 403 (1800).
  3. M. Piccolino, Trends Neurosci. 23, 147 (2000). [MEDLINE]
  4. J. R. Rao and G. Richter, Naturwiss. 61, 200 (1974). [MEDLINE]
  5. O. Z. Roy and R. W. Wehnert, Med. Biol. Eng. Comput. 12, 50 (1974).
  6. E. Lindstrom, The electric fruits, http://www.autopenhosting.org/lemon/ElectricFruits.pdf, 4 November 2009.
  7. D. Prajjal, Curr. Sci. 85, 244 (2003).
  8. A. J. Gusphyl, “Generating electricity within the physiological environment for low power implantable medical device applications: towards the development of in-vivo biofuel cell technologies,” Ph.D. thesis, University of Pittsburgh, 2007.
  9. N. Mano, M. Fey, and A. Heller, J. Am. Chem. Soc. 125, 6588 (2003). [ISI] [MEDLINE]
  10. A. Golberg, H. D. Rabinowitch, and B. Rubinsky, Biochem. Biophys. Res. Commun. 389, 168 (2009). [MEDLINE]
  11. The European Cultivated Potato Database, 2009, http://www.europotato.org/menu.php.
  12. H. A. Kiehne, Battery Technology Handbook, 2nd ed. (Dekker, New York, 2003).
  13. J. K. Kim and E. F. Schubert, Opt. Express 16, 21835 (2008). [MEDLINE]
  14. E. Mills, Science 308, 1263 (2005). [MEDLINE]
  15. B. Rubinsky, Technol. Cancer Res. Treat. 6, 255 (2007). [MEDLINE]
  16. R. D. Davalos, B. Rubinsky, and L. M. Mir, Bioelectrochemistry 61, 99 (2003). [MEDLINE]
  17. J. L. Collins and I. E. McCarty, Food Technol. 23, 63 (1969).
  18. C. Severini, A. Baiano, T. de Pilli, R. Romaniello, and A. Derossi, J. Food Biochem. 20, 75 (2007).
  19. P. Vanysek, in Handbook of Chemistry and Physics, 89th ed., edited by D. R. Lide (Taylot & Francis, Boca Raton, FL, 2008).
  20. S. Grimnes and O. Martinsen, Bioimpedance and Bioelectricity Basics (Elsevier, San Diego, California, 2000).
  21. Allied electronics, http://www.alliedelec.com/Search/SearchResults.aspx?N=0&Ntk=Secondary&Ntt=7295173&campaign=Google%20Base, 5 November 2009.
  22. F. Francia, J. Johnston, and A. Silverman, Enhancing Portable Lighting Services in Rural Nicaragua, 2008, http://josiah.berkeley.edu/2008Spring/ER291/Report/NicaLighting-rpt.pdf, 5 November 2009.
  23. Energizer, Energizer E91, http://data.energizer.com/PDFs/e91.pdf, 5 November 2009.
  24. G. Prentice, Electrochemical Engineering Principles (Prentice-Hall, New Jersey, 1990).
  25. J. Granderson, J. Galvin, D. Bolotov, R. Clear, A. Jacobson, and E. Mills, “Measured Off-Grid LED Lighting System Performance,” Lumina Project Technical Report No. 4, 2008, http://light.lbl.gov/pubs/tr/lumina-tr4.pdf, 4 November 2009.
  26. FAO, FAOSTAT 2007, http://faostat.fao.org/.
  27. International Potato Center, 2006, http://www.cipotato.org/potato, 15 August 2009.
  28. FAO, New Light on a Hidden Treasure, 2008, http://www.potato2008.org/en/events/book.html, 1 November 2009.
CITING ARTICLES

There are currently no citings for this article.

沒有留言:

張貼留言

注意:只有此網誌的成員可以留言。